Article for advanced users
Information on this page is intended for users with advanced technical knowledge.Parsing Vector Data
May 14, 2024 · 10 minutes to read
Introduction
This guide should help you decoding the burst messages received after enabling the “Burst data into a single message” feature. This is a new feature in the Treon Aito Release 7.3 for Gateway that is disabled by default. This feature can be enable from here: Data Parsing
Decoding
Base 64 encoded bytes for value described by VectorType
-field.
The data is base 64 encoded bytes which are serialized from integer type defined by VectorFormat
-field.
To decode this field it is required to:
1. Decode the base 64 into bytes.
2. Deserialize the bytes into array of numbers (type and size defined by `VectorFormat`-field).
3. Multiply all of the numbers in the array with `Multiplier`-field to get correct unit.
Python instructions
Step 1:
>>> import struct
>>> import base64
>>> raw = "Data"
>>> a = base64.standard_b64decode(raw)
Step 2:
>>> b = struct.unpack("<1600H", a)
This command will depend on Vector Format. The options are:
- u8 = B
- u16 = H
- i8 = b
- i16 = h
The number (1600) will be Size for u8 and i8 formats and Size/2 for u16 and i16 formats
Step 3:
>>> c = []
>>> for x in b:
>>> c.append(x/100000)
Here the multiplier will change the formula as well.
Sample data:
{"Axis":"y","Data":"JAsNAA8ADgAmACYAJAA5AGUAoADmAMEAAgIVBasEaQKMAzAERwIWAhEBiwC7CfEQxQe9AOMAXwKeAssAfAAKAD4CHwZyBb8CGQKiAXUBEQT0BuIJ4gkFDqwJeAnpCfUE1AaPA6QCzQGPAMwBXwFIAVsAYQH/ADwAtwIOBCoCEQJYA90CHQywB4ATwBL6AEIF9QyyD2YJ8QMUDfcNZQjmAbQFsA55F58GpBLaFl8N+AF1B1AQbBW3O2w/aixaOxETHAdkA/MRRBQWDuEJ1Q5gAmwIVQkUAzgFsQUcEyki1xeiBr0CtgsDDf0aHD/tTuwzJx9kJvoxPCN+F2kaIB4jEWUgNRhDEEcHLyfwJZgIGAoqDwwl6jRHFRoMNAjFDOsVQA2BDdYI0B6qN3g6DhkJTDZvhBHmhqiCrCXkKFgutXbgyF1FpSFSGtwDSSmjLCQRrCo3JS8w5joGC9IRxg62FoJZG1kwFZ8NwgRHE0IaNg6fHQwiyh/yDswWmQ6HCTgDZAvZHokepQW+GQ8DLg1hCvoIxR62KH0uJDv0IgoMjBpnAtA51kfQHAANDB0nC2wjyj+5NFweVAQYQXxKyRf9G6ELFiQCGtkXhlAMe6059CUMDKRThE4/AvIrEhdfIVJNKTaJR95B9CmcjB21cXJVItIlv0J0bN4wR1l6tRa2eV3iM7Ep4RCGIjwHgiOMPMcsoSxeIf8WXDTCIgQ/knHgPn4IjRMPGiAmqAloHyY3PkAtIYMH5BOmKBEWeA6EJ+IXLQrpDngG6xKVE7gO9Q4QHOkW4A0hCo0NPAmhAjwFqhChEN8KhAUKDjwOzwGlCIYP/gObCrIGIwoMF1YLjANCGhIgZhxSFekUPyeFERoP3AiaCM0iEyM+DV8PgA4MFqINBh3eFLQGtgLfBRQMNREBBOMNFA38AoAHCALtB+QLGwoDA7sJ+iRqJ2EIyg86BUcIsw+tC8QINga1CtkL1QjSDx4E2AbxFCYOJQRqDIoFZwelC14LUgjiHLYoUhqZBAMPYwXaDHId3Rq3DmEOOBIUCiQL8gR0HzYoPCMjDRYGdAm3CIMVaSQwHZgIPgwwE00FXxPtBfEN6hNaGrQVdAarBGELZwazEvwahhAADzwgaxxhEqsP4wPHFO8V1ggNHB8TqwyUEbwEbB6/M2AjvATkEPgHVhQfFqIFmBZfGvMZjSK6M9w3qyFAFwkLQB9ABaoU0BsbHl8jjSCxDgEiQh0KE8QbmS7JOi8wsxR0NZcjtRPtOwtLgDnDGvAdzRNjCu8XQirHOoZDUSV5E2QcbyzHKb4PaS0+QKBECTf5B+sj1xa0CtYjZzknNhYt+xoPElYFuhYwFmcM5hg0HBQlQBoHDeweCSfeLJkzR0FJMmQg1SUoH60TehmAJOYdQjWMI4AGUxjhKeEm3A0JG2Amhx8DJBwryht3DiMpdjU4Qjw0yDXCKWUXjBfTAbQUOyvGMVwWbQ9MHBUJuip7POhMpW9BZCUmOTiSJh4M+SN6M3QqqxZLHGYosSvbKOIkHg7wKOxf0T5gDzgk0x5vHO1Bu2usdnNxSlU2PIgckiG8PRU7qjgxGK8anhgeC3INhwvqPd9xDHt7eFtVexmPCpYTBiGYEF0cfQlHKsYIUyZOJt4yzDATJ3QyGjepIgUU0hjMOitFnBRWLQAd2iLELBgz3ivCCBUO1iBYLRMpuieCES8RqxmVAYwhXS6WJf8SqA4YAioRARejE+wYkjKmOXAtUEMXOwgkqwZGJgsnVi2yGMcSxAk6CRgNkh8ZGJY1Vy3+Bycf/jYJM74R4AZzIFcKzySqJgYe2yMOHzInPBtlJ7QXexa5De8JPQWfDrISQBZRHgcPAx5YKfEeRj51NBgUwxwiAREfwxUUDZofLSX9Bw8tURskCmwr5EmXM9sXNgUEEIUtNSG7GmIE3BfOG34gUhaoJEEVrQQJGZwVPiv7HvkqxipvGx4wPCnYATExxGEgdME3cR5bMpwzJguESG5KOzL9G5oncy5jHCodFicZKHI9wB5CElAjcSBgLkwjxSj6GmgTrg4nEjUNmCYeNBQhrCFpG50OkCsKQIVAAS0eNesxyTm4N58P1QznK08RXyERJiwRhBxPJkQuMwYrOolGiR1RH8kZWxikJkgtcD6nSVA4GiL9EKgczDHfEc8kKENFNgocoR3LAhQkciZ2Cwoimib4HXItngQkMP8ruy94RTg0LQ90CRMRfSSIOp0ubCjUIaQLsS8UHHoPsAt4H9gYnlM1QfohYBsQGi5MLV02fvJXD2nWLWwgcFF6XNJkB2qEnum+TSF9Sbo2QGMYrTGarJIKi/uV96HIaBpD0x2ahYGI13gVP8YNKWO+i3eQbnp3kKZlr1EKfO545WIPKx4ktEQ+HuMkFBNgPeF6lKiUjIlGYzYdF3Ewh2ENg9t8Fz/MDsYOehAjJ/Ac4XNbduQmLhLcH6MyuDfGT5FkIBnoM4tjoX3WURpb4mtCMHMwXCOLK3pHRi1uM7I1pCw/RoRMzjt9RRIU8DQ/RrlN2EL8QyojqUzNUdYvjye9HZc0yVcoTOwxT0IfKfMgNx0mOYEloDQYQPg+ox4UIg0cWD+sLEAN9BzlKNdCfzYiJDNJSixvI/ghYiq1MdguphRmMSE/0DFIPaEZpQuWHXMSXyhRK84Z6AvSC7UlBitvK90ydR7lKXQQNgdGEYkMwxCzCToQxBpZH9kHIhEvFbc3KyAIGFQh2Q91H94OYBTLIbQlFBCgEssT1xVjCocg8hbuHHMiFhQ3EqYLwiMdLVceXxCxEREVzxwsDO4QfhsrKB4gTA2LCXwUbhBTFtIeVxmNG3seyyJ0H/4RQBLGDwkPSBWaFjUOpA9RDJYPDhYxB3cNMg2hDMEJUh5nGzAXKhKDCfcY6h/3IJ0WNwluBMkI8AzoHlM8hE/NNpoejQ3GGFgWLx/mHEwiiysJGz4i2TWlKXQb9hcyL6QiHD0eKl4mGlRrTjwlDyXNQj8fxEZ4ejhY50otOtYHzi6mJh5LeF/DKEAnRB2nJcsRGTjYQd1MCyucLG5DL4hhRFEZ3wvqHPAbAyMIJ8AmQGbNg+xexQsXEugUZmlldxl2E5JplfZgm2JVP7g4Ay94nPl85VZoXLhWZ0tTXBU+I4JSfJs4WVBrWbFMBTByag6grYPANCNHgG6uUbw91Cj0HoMcFkTgI9Mc0Btgcj9xmT1HJWglRjmIVqtTAxR9GZMgdijuIIYHmh9SLJAYnQEGGZsVERa3HAMd1yLLKWAENCCVLLEu0yDlLUAhcQCxGv0Xtx66INcXyhimEYkmPBEHDnJAjEh7I0oS8RRmMgIuixj/IhYhRQ6HIbou8TK+IusTbQ9EQL00FBqPOJwyPD1cFlAmJjdZIm0l1ifAEhIV1yJKKboNtRKpIawVHy8BYD47RCynR2MJHE8KSNInSwl2AyoJ1x1tPY44jSxBD2U1ZBgkG+gnsCXTB6kS8yA8FAQxM0yJKXo0HVwTEfA2OxfzLK4ftlAWWXU65ixWMkY1QzZqXwVwK0GKIGkgDxbyMxhdvgR7Qk4ocCxpKO559nPBIyoa5C7HJIwrQx6WMfsrZ0c4RnYuLmJoNuspkBjWCVkOZzSDEPyLHIRHajUjxDLkHCIe2zZlVgk6nyNgQKUZEER9T+4SUkzyVHA62iYDFoMyzjAvBWlF7kCkJXUsCDWjHV4yd0BjOfYrOQZKJpcG6BcIK/ZSg0M+Uy1DJhfdD/4VJxFkBTka/ho+FYIjCxccEDAatRX8BJcSZiciHFQKgBgzCaczWiArJ4sw3DuWEPI0XhGrGjQQjRYoD3cLYBuCIi4aRiJpNwkr/C6DCZggihr+GJk/txVYFf8iCAxAHgsRpg7QE1Ei5SWJI8ItViJEFCQOExFVJJIObiL0F9wdAix+LrYx+itIGGkZOTQzLoFANDNvEWsnMhRhFCQ4STsQEzQkYSlaEdoWoztiLSMI1xBMKXNb8EjBIosu7DVvEN4zpxx/C44f8x9IKaUqWS3rJLwLlRA5G/4sCxR2J2AqaSxOPVkenylkChITag/4GdUDSwYhGqYhDhCZKT0p/CF3HKEkYRYxEaAcWwvvGawvEy4tEXoTkgvVG2kRxhVmHk0eXklxMMYkNE39QwYG5CREL7UtUSMlKpYq6BsJEKYb4RkiOCYxFB2HRURYay4OHEcaqAUkJRAxkyi5D0knkCptGKsQGw9nHCsTOg+dGO4oTi6xIdMQBCFwHMkrNU8cJucj5DToMcIXAiRcMsVVzFM=","GatewayId":"902f1079","MeasDetails":{"CalcId":2,"FFT":{"BinSize":724,"FftSize":4096,"FftWindow":1},"Filter":{"Decimation":9,"HighCutoff":1333.5,"LowCutoff":10.0,"Type":3},"G-range":4,"Id":64251,"MeasurementTimeInterval":37444.0,"Trigger":8},"Multiplier":1e-05,"SensorNodeId":"f39296a3","Size":3200,"SourceAddress":"10720914","Timestamp":1713175532,"Type":"vector","VectorFormat":"u16","VectorType":"a-fft","Version":"1.0.0"}
Important key values:
"Multiplier":1e-05
"Data"= "JAsNAA8AD...."
"Size":3200
"VectorFormat":"u16"
Example
>>> import struct
>>> import base64
>>> raw = "JAsNAA8ADgAmACYAJAA5AGUAoADmAMEAAgIVBasEaQKMAzAERwIWAhEBiwC7CfEQxQe9AOMAXwKeAssAfAAKAD4CHwZyBb8CGQKiAXUBEQT0BuIJ4gkFDqwJeAnpCfUE1AaPA6QCzQGPAMwBXwFIAVsAYQH/ADwAtwIOBCoCEQJYA90CHQywB4ATwBL6AEIF9QyyD2YJ8QMUDfcNZQjmAbQFsA55F58GpBLaFl8N+AF1B1AQbBW3O2w/aixaOxETHAdkA/MRRBQWDuEJ1Q5gAmwIVQkUAzgFsQUcEyki1xeiBr0CtgsDDf0aHD/tTuwzJx9kJvoxPCN+F2kaIB4jEWUgNRhDEEcHLyfwJZgIGAoqDwwl6jRHFRoMNAjFDOsVQA2BDdYI0B6qN3g6DhkJTDZvhBHmhqiCrCXkKFgutXbgyF1FpSFSGtwDSSmjLCQRrCo3JS8w5joGC9IRxg62FoJZG1kwFZ8NwgRHE0IaNg6fHQwiyh/yDswWmQ6HCTgDZAvZHokepQW+GQ8DLg1hCvoIxR62KH0uJDv0IgoMjBpnAtA51kfQHAANDB0nC2wjyj+5NFweVAQYQXxKyRf9G6ELFiQCGtkXhlAMe6059CUMDKRThE4/AvIrEhdfIVJNKTaJR95B9CmcjB21cXJVItIlv0J0bN4wR1l6tRa2eV3iM7Ep4RCGIjwHgiOMPMcsoSxeIf8WXDTCIgQ/knHgPn4IjRMPGiAmqAloHyY3PkAtIYMH5BOmKBEWeA6EJ+IXLQrpDngG6xKVE7gO9Q4QHOkW4A0hCo0NPAmhAjwFqhChEN8KhAUKDjwOzwGlCIYP/gObCrIGIwoMF1YLjANCGhIgZhxSFekUPyeFERoP3AiaCM0iEyM+DV8PgA4MFqINBh3eFLQGtgLfBRQMNREBBOMNFA38AoAHCALtB+QLGwoDA7sJ+iRqJ2EIyg86BUcIsw+tC8QINga1CtkL1QjSDx4E2AbxFCYOJQRqDIoFZwelC14LUgjiHLYoUhqZBAMPYwXaDHId3Rq3DmEOOBIUCiQL8gR0HzYoPCMjDRYGdAm3CIMVaSQwHZgIPgwwE00FXxPtBfEN6hNaGrQVdAarBGELZwazEvwahhAADzwgaxxhEqsP4wPHFO8V1ggNHB8TqwyUEbwEbB6/M2AjvATkEPgHVhQfFqIFmBZfGvMZjSK6M9w3qyFAFwkLQB9ABaoU0BsbHl8jjSCxDgEiQh0KE8QbmS7JOi8wsxR0NZcjtRPtOwtLgDnDGvAdzRNjCu8XQirHOoZDUSV5E2QcbyzHKb4PaS0+QKBECTf5B+sj1xa0CtYjZzknNhYt+xoPElYFuhYwFmcM5hg0HBQlQBoHDeweCSfeLJkzR0FJMmQg1SUoH60TehmAJOYdQjWMI4AGUxjhKeEm3A0JG2Amhx8DJBwryht3DiMpdjU4Qjw0yDXCKWUXjBfTAbQUOyvGMVwWbQ9MHBUJuip7POhMpW9BZCUmOTiSJh4M+SN6M3QqqxZLHGYosSvbKOIkHg7wKOxf0T5gDzgk0x5vHO1Bu2usdnNxSlU2PIgckiG8PRU7qjgxGK8anhgeC3INhwvqPd9xDHt7eFtVexmPCpYTBiGYEF0cfQlHKsYIUyZOJt4yzDATJ3QyGjepIgUU0hjMOitFnBRWLQAd2iLELBgz3ivCCBUO1iBYLRMpuieCES8RqxmVAYwhXS6WJf8SqA4YAioRARejE+wYkjKmOXAtUEMXOwgkqwZGJgsnVi2yGMcSxAk6CRgNkh8ZGJY1Vy3+Bycf/jYJM74R4AZzIFcKzySqJgYe2yMOHzInPBtlJ7QXexa5De8JPQWfDrISQBZRHgcPAx5YKfEeRj51NBgUwxwiAREfwxUUDZofLSX9Bw8tURskCmwr5EmXM9sXNgUEEIUtNSG7GmIE3BfOG34gUhaoJEEVrQQJGZwVPiv7HvkqxipvGx4wPCnYATExxGEgdME3cR5bMpwzJguESG5KOzL9G5oncy5jHCodFicZKHI9wB5CElAjcSBgLkwjxSj6GmgTrg4nEjUNmCYeNBQhrCFpG50OkCsKQIVAAS0eNesxyTm4N58P1QznK08RXyERJiwRhBxPJkQuMwYrOolGiR1RH8kZWxikJkgtcD6nSVA4GiL9EKgczDHfEc8kKENFNgocoR3LAhQkciZ2Cwoimib4HXItngQkMP8ruy94RTg0LQ90CRMRfSSIOp0ubCjUIaQLsS8UHHoPsAt4H9gYnlM1QfohYBsQGi5MLV02fvJXD2nWLWwgcFF6XNJkB2qEnum+TSF9Sbo2QGMYrTGarJIKi/uV96HIaBpD0x2ahYGI13gVP8YNKWO+i3eQbnp3kKZlr1EKfO545WIPKx4ktEQ+HuMkFBNgPeF6lKiUjIlGYzYdF3Ewh2ENg9t8Fz/MDsYOehAjJ/Ac4XNbduQmLhLcH6MyuDfGT5FkIBnoM4tjoX3WURpb4mtCMHMwXCOLK3pHRi1uM7I1pCw/RoRMzjt9RRIU8DQ/RrlN2EL8QyojqUzNUdYvjye9HZc0yVcoTOwxT0IfKfMgNx0mOYEloDQYQPg+ox4UIg0cWD+sLEAN9BzlKNdCfzYiJDNJSixvI/ghYiq1MdguphRmMSE/0DFIPaEZpQuWHXMSXyhRK84Z6AvSC7UlBitvK90ydR7lKXQQNgdGEYkMwxCzCToQxBpZH9kHIhEvFbc3KyAIGFQh2Q91H94OYBTLIbQlFBCgEssT1xVjCocg8hbuHHMiFhQ3EqYLwiMdLVceXxCxEREVzxwsDO4QfhsrKB4gTA2LCXwUbhBTFtIeVxmNG3seyyJ0H/4RQBLGDwkPSBWaFjUOpA9RDJYPDhYxB3cNMg2hDMEJUh5nGzAXKhKDCfcY6h/3IJ0WNwluBMkI8AzoHlM8hE/NNpoejQ3GGFgWLx/mHEwiiysJGz4i2TWlKXQb9hcyL6QiHD0eKl4mGlRrTjwlDyXNQj8fxEZ4ejhY50otOtYHzi6mJh5LeF/DKEAnRB2nJcsRGTjYQd1MCyucLG5DL4hhRFEZ3wvqHPAbAyMIJ8AmQGbNg+xexQsXEugUZmlldxl2E5JplfZgm2JVP7g4Ay94nPl85VZoXLhWZ0tTXBU+I4JSfJs4WVBrWbFMBTByag6grYPANCNHgG6uUbw91Cj0HoMcFkTgI9Mc0Btgcj9xmT1HJWglRjmIVqtTAxR9GZMgdijuIIYHmh9SLJAYnQEGGZsVERa3HAMd1yLLKWAENCCVLLEu0yDlLUAhcQCxGv0Xtx66INcXyhimEYkmPBEHDnJAjEh7I0oS8RRmMgIuixj/IhYhRQ6HIbou8TK+IusTbQ9EQL00FBqPOJwyPD1cFlAmJjdZIm0l1ifAEhIV1yJKKboNtRKpIawVHy8BYD47RCynR2MJHE8KSNInSwl2AyoJ1x1tPY44jSxBD2U1ZBgkG+gnsCXTB6kS8yA8FAQxM0yJKXo0HVwTEfA2OxfzLK4ftlAWWXU65ixWMkY1QzZqXwVwK0GKIGkgDxbyMxhdvgR7Qk4ocCxpKO559nPBIyoa5C7HJIwrQx6WMfsrZ0c4RnYuLmJoNuspkBjWCVkOZzSDEPyLHIRHajUjxDLkHCIe2zZlVgk6nyNgQKUZEER9T+4SUkzyVHA62iYDFoMyzjAvBWlF7kCkJXUsCDWjHV4yd0BjOfYrOQZKJpcG6BcIK/ZSg0M+Uy1DJhfdD/4VJxFkBTka/ho+FYIjCxccEDAatRX8BJcSZiciHFQKgBgzCaczWiArJ4sw3DuWEPI0XhGrGjQQjRYoD3cLYBuCIi4aRiJpNwkr/C6DCZggihr+GJk/txVYFf8iCAxAHgsRpg7QE1Ei5SWJI8ItViJEFCQOExFVJJIObiL0F9wdAix+LrYx+itIGGkZOTQzLoFANDNvEWsnMhRhFCQ4STsQEzQkYSlaEdoWoztiLSMI1xBMKXNb8EjBIosu7DVvEN4zpxx/C44f8x9IKaUqWS3rJLwLlRA5G/4sCxR2J2AqaSxOPVkenylkChITag/4GdUDSwYhGqYhDhCZKT0p/CF3HKEkYRYxEaAcWwvvGawvEy4tEXoTkgvVG2kRxhVmHk0eXklxMMYkNE39QwYG5CREL7UtUSMlKpYq6BsJEKYb4RkiOCYxFB2HRURYay4OHEcaqAUkJRAxkyi5D0knkCptGKsQGw9nHCsTOg+dGO4oTi6xIdMQBCFwHMkrNU8cJucj5DToMcIXAiRcMsVVzFM="
>>> a = base64.standard_b64decode(raw)
>>> b = struct.unpack("<1600H", a)
>>> c = []
>>> for x in b:
... c.append(x/100000)
...
>>> c
[0.02852, 0.00013, 0.00015, 0.00014, 0.00038, 0.00038, 0.00036, 0.00057, 0.00101, 0.0016, 0.0023, 0.00193, 0.00514, 0.01301, 0.01195, 0.00617, 0.00908, 0.01072, 0.00583, 0.00534, 0.00273, 0.00139, 0.02491, 0.04337, 0.01989, 0.00189, 0.00227, 0.00607, 0.0067, 0.00203, 0.00124, 0.0001, 0.00574, 0.01567, 0.01394, 0.00703, 0.00537, 0.00418, 0.00373, 0.01041, 0.0178, 0.0253, 0.0253, 0.03589, 0.02476, 0.02424, 0.02537, 0.01269, 0.01748, 0.00911, 0.00676, 0.00461, 0.00143, 0.0046, 0.00351, 0.00328, 0.00091, 0.00353, 0.00255, 0.0006, 0.00695, 0.01038, 0.00554, 0.00529, 0.00856, 0.00733, 0.03101, 0.01968, 0.04992, 0.048, 0.0025, 0.01346, 0.03317, 0.04018, 0.02406, 0.01009, 0.03348, 0.03575, 0.02149, 0.00486, 0.0146, 0.0376, 0.06009, 0.01695, 0.04772, 0.0585, 0.03423, 0.00504, 0.01909, 0.04176, 0.05484, 0.15287, 0.16236, 0.1137, 0.15194, 0.04881, 0.0182, 0.00868, 0.04595, 0.05188, 0.03606, 0.02529, 0.03797, 0.00608, 0.02156, 0.02389, 0.00788, 0.01336, 0.01457, 0.04892, 0.08745, 0.06103, 0.01698, 0.00701, 0.02998, 0.03331, 0.06909, 0.16156, 0.20205, 0.13292, 0.07975, 0.09828, 0.12794, 0.0902, 0.06014, 0.06761, 0.07712, 0.04387, 0.08293, 0.06197, 0.04163, 0.01863, 0.10031, 0.09712, 0.022, 0.02584, 0.03882, 0.09484, 0.13546, 0.05447, 0.03098, 0.021, 0.03269, 0.05611, 0.03392, 0.03457, 0.02262, 0.07888, 0.1425, 0.14968, 0.06414, 0.19465, 0.2847, 0.04484, 0.34534, 0.33448, 0.09644, 0.10468, 0.11864, 0.30389, 0.51424, 0.17757, 0.08613, 0.06738, 0.00988, 0.10569, 0.11427, 0.04388, 0.10924, 0.09527, 0.12335, 0.15078, 0.02822, 0.04562, 0.03782, 0.05814, 0.22914, 0.22811, 0.05424, 0.03487, 0.01218, 0.04935, 0.06722, 0.03638, 0.07583, 0.08716, 0.08138, 0.03826, 0.05836, 0.03737, 0.02439, 0.00824, 0.02916, 0.07897, 0.07817, 0.01445, 0.0659, 0.00783, 0.03374, 0.02657, 0.02298, 0.07877, 0.10422, 0.11901, 0.1514, 0.08948, 0.03082, 0.06796, 0.00615, 0.148, 0.1839, 0.07376, 0.03328, 0.07436, 0.02855, 0.09068, 0.1633, 0.13497, 0.07772, 0.01108, 0.16664, 0.19068, 0.06089, 0.07165, 0.02977, 0.09238, 0.06658, 0.06105, 0.20614, 0.315, 0.14765, 0.09716, 0.03084, 0.21412, 0.201, 0.00575, 0.1125, 0.05906, 0.08543, 0.19794, 0.13865, 0.18313, 0.16862, 0.1074, 0.35996, 0.46365, 0.29297, 0.08789, 0.09682, 0.17087, 0.27764, 0.1251, 0.22855, 0.46458, 0.46614, 0.23929, 0.13282, 0.10673, 0.04321, 0.08838, 0.01852, 0.0909, 0.155, 0.11463, 0.11425, 0.08542, 0.05887, 0.13404, 0.08898, 0.16132, 0.29074, 0.16096, 0.02174, 0.05005, 0.06671, 0.0976, 0.02472, 0.0804, 0.14118, 0.16446, 0.08493, 0.01923, 0.05092, 0.10406, 0.05649, 0.03704, 0.10116, 0.06114, 0.02605, 0.03817, 0.01656, 0.04843, 0.05013, 0.03768, 0.03829, 0.07184, 0.05865, 0.03552, 0.02593, 0.03469, 0.02364, 0.00673, 0.0134, 0.04266, 0.04257, 0.02783, 0.01412, 0.03594, 0.03644, 0.00463, 0.02213, 0.03974, 0.01022, 0.02715, 0.01714, 0.02595, 0.059, 0.02902, 0.00908, 0.06722, 0.0821, 0.0727, 0.05458, 0.05353, 0.10047, 0.04485, 0.03866, 0.02268, 0.02202, 0.08909, 0.08979, 0.0339, 0.03935, 0.03712, 0.05644, 0.0349, 0.0743, 0.05342, 0.01716, 0.00694, 0.01503, 0.03092, 0.04405, 0.01025, 0.03555, 0.03348, 0.00764, 0.0192, 0.0052, 0.02029, 0.03044, 0.02587, 0.00771, 0.02491, 0.09466, 0.1009, 0.02145, 0.04042, 0.01338, 0.02119, 0.04019, 0.02989, 0.02244, 0.0159, 0.02741, 0.03033, 0.02261, 0.0405, 0.01054, 0.01752, 0.05361, 0.03622, 0.01061, 0.03178, 0.01418, 0.01895, 0.02981, 0.0291, 0.0213, 0.07394, 0.10422, 0.06738, 0.01177, 0.03843, 0.01379, 0.0329, 0.07538, 0.06877, 0.03767, 0.03681, 0.04664, 0.0258, 0.02852, 0.01266, 0.08052, 0.10294, 0.0902, 0.03363, 0.01558, 0.0242, 0.02231, 0.05507, 0.09321, 0.07472, 0.022, 0.03134, 0.04912, 0.01357, 0.04959, 0.01517, 0.03569, 0.05098, 0.06746, 0.05556, 0.01652, 0.01195, 0.02913, 0.01639, 0.04787, 0.06908, 0.0423, 0.0384, 0.08252, 0.07275, 0.04705, 0.04011, 0.00995, 0.05319, 0.05615, 0.02262, 0.07181, 0.04895, 0.03243, 0.045, 0.01212, 0.07788, 0.13247, 0.09056, 0.01212, 0.04324, 0.0204, 0.05206, 0.05663, 0.01442, 0.05784, 0.06751, 0.06643, 0.08845, 0.13242, 0.143, 0.08619, 0.05952, 0.02825, 0.08, 0.01344, 0.0529, 0.0712, 0.07707, 0.09055, 0.08333, 0.03761, 0.08705, 0.0749, 0.04874, 0.07108, 0.11929, 0.15049, 0.12335, 0.05299, 0.13684, 0.09111, 0.05045, 0.15341, 0.19211, 0.1472, 0.06851, 0.07664, 0.05069, 0.02659, 0.06127, 0.10818, 0.15047, 0.17286, 0.09553, 0.04985, 0.07268, 0.11375, 0.10695, 0.0403, 0.11625, 0.16446, 0.17568, 0.14089, 0.02041, 0.09195, 0.05847, 0.0274, 0.09174, 0.14695, 0.13863, 0.11542, 0.06907, 0.04623, 0.01366, 0.05818, 0.0568, 0.03175, 0.06374, 0.0722, 0.09492, 0.0672, 0.03335, 0.07916, 0.09993, 0.11486, 0.13209, 0.16711, 0.12873, 0.08292, 0.09685, 0.07976, 0.05037, 0.06522, 0.09344, 0.07654, 0.13634, 0.091, 0.01664, 0.06227, 0.10721, 0.09953, 0.03548, 0.06921, 0.09824, 0.08071, 0.09219, 0.11036, 0.07114, 0.03703, 0.10531, 0.13686, 0.16952, 0.13372, 0.13768, 0.1069, 0.05989, 0.06028, 0.00467, 0.053, 0.11067, 0.12742, 0.05724, 0.03949, 0.07244, 0.02325, 0.10938, 0.15483, 0.19688, 0.28581, 0.25665, 0.09765, 0.14393, 0.09874, 0.03102, 0.09209, 0.13178, 0.10868, 0.05803, 0.07243, 0.10342, 0.11185, 0.10459, 0.09442, 0.03614, 0.1048, 0.24556, 0.16081, 0.03936, 0.09272, 0.07891, 0.07279, 0.16877, 0.27579, 0.3038, 0.29043, 0.21834, 0.15414, 0.07304, 0.08594, 0.15804, 0.15125, 0.14506, 0.06193, 0.06831, 0.06302, 0.02846, 0.03442, 0.02951, 0.1585, 0.29151, 0.315, 0.30843, 0.21851, 0.06523, 0.02703, 0.05014, 0.08454, 0.04248, 0.07261, 0.02429, 0.10823, 0.02246, 0.09811, 0.09806, 0.13022, 0.12492, 0.10003, 0.12916, 0.14106, 0.08873, 0.05125, 0.06354, 0.15052, 0.17707, 0.05276, 0.11606, 0.07424, 0.08922, 0.1146, 0.1308, 0.1123, 0.02242, 0.03605, 0.08406, 0.11608, 0.10515, 0.1017, 0.04482, 0.04399, 0.06571, 0.00405, 0.08588, 0.11869, 0.09622, 0.04863, 0.03752, 0.00536, 0.04394, 0.05889, 0.05027, 0.0638, 0.12946, 0.14758, 0.11632, 0.17232, 0.15127, 0.09224, 0.01707, 0.09798, 0.09995, 0.11606, 0.06322, 0.04807, 0.025, 0.02362, 0.03352, 0.08082, 0.06169, 0.13718, 0.11607, 0.02046, 0.07975, 0.14078, 0.13065, 0.04542, 0.0176, 0.08307, 0.02647, 0.09423, 0.09898, 0.07686, 0.09179, 0.0795, 0.10034, 0.06972, 0.10085, 0.06068, 0.05755, 0.03513, 0.02543, 0.01341, 0.03743, 0.04786, 0.05696, 0.07761, 0.03847, 0.07683, 0.10584, 0.07921, 0.15942, 0.13429, 0.05144, 0.07363, 0.0029, 0.07953, 0.05571, 0.03348, 0.0809, 0.09517, 0.02045, 0.11535, 0.06993, 0.02596, 0.11116, 0.18916, 0.13207, 0.06107, 0.01334, 0.041, 0.11653, 0.08501, 0.06843, 0.01122, 0.06108, 0.07118, 0.08318, 0.05714, 0.09384, 0.05441, 0.01197, 0.06409, 0.05532, 0.1107, 0.07931, 0.11001, 0.1095, 0.07023, 0.12318, 0.10556, 0.00472, 0.12593, 0.25028, 0.29728, 0.14273, 0.07793, 0.12891, 0.13212, 0.02854, 0.18564, 0.19054, 0.12859, 0.07165, 0.10138, 0.11891, 0.07267, 0.07466, 0.10006, 0.10265, 0.1573, 0.07872, 0.04674, 0.0904, 0.08305, 0.11872, 0.09036, 0.10437, 0.06906, 0.04968, 0.03758, 0.04647, 0.03381, 0.0988, 0.13342, 0.08468, 0.0862, 0.07017, 0.03741, 0.11152, 0.16394, 0.16517, 0.11521, 0.13598, 0.12779, 0.14793, 0.14264, 0.03999, 0.03285, 0.11239, 0.04431, 0.08543, 0.09745, 0.04396, 0.073, 0.09807, 0.11844, 0.01587, 0.14891, 0.18057, 0.07561, 0.08017, 0.06601, 0.06235, 0.09892, 0.11592, 0.15984, 0.18855, 0.14416, 0.0873, 0.04349, 0.07336, 0.12748, 0.04575, 0.09423, 0.17192, 0.13893, 0.07178, 0.07585, 0.00715, 0.09236, 0.09842, 0.02934, 0.08714, 0.09882, 0.07672, 0.11634, 0.01182, 0.12324, 0.11263, 0.12219, 0.17784, 0.13368, 0.03885, 0.0242, 0.04371, 0.09341, 0.14984, 0.11933, 0.10348, 0.0866, 0.0298, 0.12209, 0.07188, 0.03962, 0.02992, 0.08056, 0.0636, 0.21406, 0.16693, 0.08698, 0.07008, 0.06672, 0.19502, 0.23853, 0.3231, 0.22514, 0.26895, 0.11734, 0.083, 0.20848, 0.23674, 0.2581, 0.27143, 0.4058, 0.48873, 0.08525, 0.18813, 0.1401, 0.25408, 0.44312, 0.39473, 0.37548, 0.35594, 0.38395, 0.41463, 0.26824, 0.17178, 0.07635, 0.34202, 0.34945, 0.30935, 0.16149, 0.03526, 0.25385, 0.35774, 0.36983, 0.31342, 0.36983, 0.26022, 0.20911, 0.31754, 0.30958, 0.25317, 0.11023, 0.09246, 0.17588, 0.07742, 0.09443, 0.04884, 0.15712, 0.31457, 0.43156, 0.35988, 0.18057, 0.13923, 0.05917, 0.12401, 0.24967, 0.33549, 0.31963, 0.16151, 0.03788, 0.03782, 0.04218, 0.10019, 0.07408, 0.29665, 0.30299, 0.09956, 0.04654, 0.08156, 0.12963, 0.14264, 0.20422, 0.25745, 0.06432, 0.13288, 0.25483, 0.32161, 0.2095, 0.23322, 0.27618, 0.12354, 0.12403, 0.09052, 0.11147, 0.18298, 0.1159, 0.13166, 0.13746, 0.11428, 0.17983, 0.19588, 0.1531, 0.17789, 0.05138, 0.13552, 0.17983, 0.19897, 0.17112, 0.17404, 0.09002, 0.19625, 0.20941, 0.12246, 0.10127, 0.07613, 0.13463, 0.22473, 0.19496, 0.1278, 0.16975, 0.10527, 0.08435, 0.07479, 0.1463, 0.09601, 0.13472, 0.16408, 0.1612, 0.07843, 0.08724, 0.07181, 0.16216, 0.11436, 0.03392, 0.07412, 0.10469, 0.17111, 0.13951, 0.0925, 0.18739, 0.11338, 0.09071, 0.08696, 0.1085, 0.12725, 0.11992, 0.05286, 0.12646, 0.16161, 0.12752, 0.15688, 0.06561, 0.02981, 0.07574, 0.04723, 0.10335, 0.11089, 0.06606, 0.03048, 0.03026, 0.09653, 0.11014, 0.11119, 0.13021, 0.07797, 0.10725, 0.04212, 0.01846, 0.04422, 0.03209, 0.04291, 0.02483, 0.04154, 0.06852, 0.08025, 0.02009, 0.04386, 0.05423, 0.14263, 0.08235, 0.06152, 0.08532, 0.04057, 0.08053, 0.03806, 0.05216, 0.08651, 0.09652, 0.04116, 0.04768, 0.05067, 0.05591, 0.02659, 0.08327, 0.05874, 0.07406, 0.08819, 0.05142, 0.04663, 0.02982, 0.09154, 0.11549, 0.07767, 0.04191, 0.04529, 0.05393, 0.07375, 0.03116, 0.04334, 0.07038, 0.10283, 0.08222, 0.03404, 0.02443, 0.05244, 0.04206, 0.05715, 0.0789, 0.06487, 0.07053, 0.07803, 0.08907, 0.08052, 0.04606, 0.04672, 0.04038, 0.03849, 0.05448, 0.05786, 0.03637, 0.04004, 0.03153, 0.0399, 0.05646, 0.01841, 0.03447, 0.03378, 0.03233, 0.02497, 0.07762, 0.07015, 0.05936, 0.0465, 0.02435, 0.06391, 0.0817, 0.08439, 0.05789, 0.02359, 0.01134, 0.02249, 0.03312, 0.07912, 0.15443, 0.20356, 0.14029, 0.07834, 0.03469, 0.06342, 0.0572, 0.07983, 0.07398, 0.0878, 0.11147, 0.06921, 0.08766, 0.13785, 0.10661, 0.07028, 0.06134, 0.12082, 0.08868, 0.15644, 0.10782, 0.09822, 0.2153, 0.20075, 0.09532, 0.09487, 0.17101, 0.07999, 0.18116, 0.31352, 0.22584, 0.19175, 0.14893, 0.02006, 0.11982, 0.09894, 0.1923, 0.2444, 0.10435, 0.10048, 0.07492, 0.09639, 0.04555, 0.14361, 0.16856, 0.19677, 0.11019, 0.1142, 0.17262, 0.34863, 0.17505, 0.06481, 0.03039, 0.07402, 0.07152, 0.08963, 0.09992, 0.0992, 0.26176, 0.33741, 0.243, 0.03013, 0.04631, 0.05352, 0.26982, 0.30565, 0.30233, 0.37395, 0.38249, 0.24822, 0.25243, 0.16213, 0.1452, 0.12035, 0.40056, 0.31993, 0.22245, 0.23656, 0.222, 0.19303, 0.23635, 0.15893, 0.33315, 0.31826, 0.14491, 0.20569, 0.22891, 0.19633, 0.12293, 0.2725, 0.40974, 0.33709, 0.13504, 0.18211, 0.28288, 0.2091, 0.15804, 0.10452, 0.07924, 0.07299, 0.1743, 0.09184, 0.07379, 0.0712, 0.2928, 0.28991, 0.15769, 0.09543, 0.09576, 0.14662, 0.22152, 0.21419, 0.05123, 0.06525, 0.08339, 0.10358, 0.0843, 0.01926, 0.0809, 0.11346, 0.06288, 0.00413, 0.06406, 0.05531, 0.05649, 0.07351, 0.07427, 0.08919, 0.10699, 0.0112, 0.08244, 0.11413, 0.11953, 0.08403, 0.11749, 0.08512, 0.00113, 0.06833, 0.06141, 0.07863, 0.08378, 0.06103, 0.06346, 0.04518, 0.09865, 0.04412, 0.03591, 0.16498, 0.18572, 0.09083, 0.04682, 0.05361, 0.12902, 0.11778, 0.06283, 0.08959, 0.0847, 0.03653, 0.08583, 0.11962, 0.13041, 0.08894, 0.05099, 0.03949, 0.16452, 0.13501, 0.06676, 0.14479, 0.12956, 0.15676, 0.05724, 0.09808, 0.14118, 0.08793, 0.09581, 0.10198, 0.048, 0.05394, 0.08919, 0.1057, 0.03514, 0.04789, 0.08617, 0.05548, 0.12063, 0.24577, 0.15166, 0.11332, 0.18343, 0.02403, 0.20252, 0.18442, 0.10194, 0.02379, 0.00886, 0.02346, 0.07639, 0.15725, 0.14478, 0.11405, 0.03905, 0.13669, 0.06244, 0.06948, 0.10216, 0.09648, 0.02003, 0.04777, 0.08435, 0.0518, 0.12548, 0.19507, 0.10633, 0.13434, 0.23581, 0.04371, 0.14064, 0.05947, 0.11507, 0.0811, 0.20662, 0.22806, 0.14965, 0.11494, 0.12886, 0.13638, 0.13891, 0.24426, 0.28677, 0.16683, 0.0833, 0.08297, 0.05647, 0.13298, 0.23832, 0.01214, 0.17019, 0.10318, 0.11376, 0.10345, 0.31214, 0.29686, 0.09153, 0.06698, 0.12004, 0.09415, 0.11148, 0.07747, 0.12694, 0.11259, 0.18279, 0.17976, 0.11894, 0.25134, 0.13928, 0.10731, 0.06288, 0.02518, 0.03673, 0.13415, 0.04227, 0.35836, 0.3382, 0.27207, 0.09013, 0.12996, 0.07396, 0.07714, 0.14043, 0.22117, 0.14857, 0.09119, 0.1648, 0.06565, 0.17424, 0.20349, 0.04846, 0.19538, 0.21746, 0.1496, 0.09946, 0.05635, 0.12931, 0.12494, 0.01327, 0.17769, 0.16622, 0.09636, 0.11381, 0.13576, 0.07587, 0.12894, 0.16503, 0.14691, 0.11254, 0.01593, 0.09802, 0.01687, 0.0612, 0.11016, 0.21238, 0.17283, 0.2131, 0.17197, 0.05926, 0.04061, 0.0563, 0.04391, 0.0138, 0.06713, 0.0691, 0.05438, 0.0909, 0.05899, 0.04124, 0.06704, 0.05557, 0.01276, 0.04759, 0.10086, 0.07202, 0.02644, 0.06272, 0.02355, 0.13223, 0.08282, 0.10027, 0.12427, 0.15324, 0.04246, 0.13554, 0.04446, 0.06827, 0.04148, 0.05773, 0.0388, 0.02935, 0.07008, 0.08834, 0.06702, 0.08774, 0.14185, 0.11017, 0.12028, 0.02435, 0.08344, 0.06794, 0.06398, 0.16281, 0.05559, 0.05464, 0.08959, 0.0308, 0.07744, 0.04363, 0.0375, 0.05072, 0.08785, 0.09701, 0.09097, 0.11714, 0.0879, 0.05188, 0.0362, 0.04371, 0.09301, 0.0373, 0.08814, 0.06132, 0.07644, 0.11266, 0.11902, 0.12726, 0.11258, 0.06216, 0.06505, 0.13369, 0.11827, 0.16513, 0.13108, 0.04463, 0.10091, 0.0517, 0.05217, 0.14372, 0.15177, 0.0488, 0.09268, 0.10593, 0.04442, 0.0585, 0.15267, 0.11618, 0.02083, 0.04311, 0.10572, 0.23411, 0.18672, 0.08897, 0.11915, 0.13804, 0.04207, 0.13278, 0.07335, 0.02943, 0.08078, 0.08179, 0.10568, 0.10917, 0.11609, 0.09451, 0.03004, 0.04245, 0.06969, 0.11518, 0.05131, 0.10102, 0.10848, 0.11369, 0.15694, 0.07769, 0.10655, 0.0266, 0.04882, 0.03946, 0.06648, 0.00981, 0.01611, 0.06689, 0.08614, 0.0411, 0.10649, 0.10557, 0.087, 0.07287, 0.09377, 0.05729, 0.04401, 0.07328, 0.02907, 0.06639, 0.12204, 0.11795, 0.04397, 0.04986, 0.02962, 0.07125, 0.04457, 0.05574, 0.07782, 0.07757, 0.18782, 0.12401, 0.09414, 0.19764, 0.17405, 0.01542, 0.09444, 0.121, 0.11701, 0.09041, 0.10789, 0.10902, 0.07144, 0.04105, 0.07078, 0.06625, 0.1437, 0.12582, 0.07444, 0.17799, 0.22596, 0.11883, 0.07182, 0.06727, 0.01448, 0.09508, 0.1256, 0.10387, 0.04025, 0.10057, 0.10896, 0.06253, 0.04267, 0.03867, 0.07271, 0.04907, 0.03898, 0.06301, 0.10478, 0.11854, 0.08625, 0.04307, 0.08452, 0.0728, 0.11209, 0.20277, 0.09756, 0.09191, 0.1354, 0.12776, 0.06082, 0.09218, 0.12892, 0.21957, 0.21452]
Treon Support
You still have questions? Our dedicated team of experts is happy to help you! Please contact Treon Support directly by e-mail.
Did you know? Treon offers Premium Support and Maintenance Packages for our customers. Get even more out of Treon and boost your sales - inquire now about features and prices!